

NATIONAL UNIVERSITY OF SINGAPORE

Department of Finance

FIN3716: Financial Modeling

Semester 2, 2022/2023

Instructor: **Assoc Prof LEE Hon Sing**

Office: **MRB BIZ1 7-75** Telephone: 6516-5665

honsing@nus.edu.sa E-mail:

Consultation Hrs: By appointment through email

Course Objective

This course has the following objectives:

- 1) provides students with an appreciation of the theories and methodologies of financial modeling.
- 2) trains students to apply finance theories to solve various problems in financial management, investments, portfolio management, and risk management.

This objective is achieved by teaching on how to design and implement financial models in the computer, with Excel as the main tool. It covers four classes of models: Corporate Finance models, Portfolio Models, Option-Pricing Models and Bond Models. It also covers simulation, some numerical methods, and VBA programming as well.

Motivation

With the increasing sophistication in financial models, and the advance in IT, finance professionals and researchers increasingly need to perform basic financial modeling and data processing using the computer on their own. Among the software used for such purposes, Microsoft Excel stands out as the default standard. Some finance professionals, for instance from investing banking, would go to the extent of recognizing Microsoft Excel as the single software that they would have to consistently use for the rest of their career. Therefore it is not only crucial to learn how to implement financial models in the computer, but especially using the advanced tools and VBA in Excel as well. This subject complement and enhances the other finance modules currently offered in the following ways:

- 1) concretizes the theoretical finance theories into implementable methods. This enhances the practical ability of the finance students.
- 2) prepares the students for financial modeling work, including model design, sourcing for data, model programming and debugging.
- 3) discusses the concept of efficiency and effectiveness when implementing financial models. This would be the only module that discusses such important perspective.

Learning Outcome

By the end of the course, students:

- learn of the four major classes of financial models and how to implement the models
- inherit a set of ready-to-go financial models which they can use in their professional or research
- are able to design and put together financial models for analyzing and solving financial problems.
- are able to critique and improve on the efficiency and effectiveness of financial models.

Mode of Teaching

The course will be delivered as a series of 13 three-hour seminar/workshop in a seminar room. In each session, the student will go through each financial model hands-on with their computer as they are covered in class. Thus each computer needs to have

- 1) Microsoft Excel (the latest version), with the Solver add-on and Visual Basic for Applications add-on.
- 2) internet access.

Pre-requisite

ACC1002 Financial Accounting, FIN2004 Finance, and FIN3102 Investment Analysis and Portfolio Management.

Reference Text

(SB) Financial Modeling, by Simon Benninga, MIT Press, 4th Edition, 2014, ISBN: 978-0262027281.

Assessment

This is a 100% CA course. The weight distribution for different components is as follows:

Mid-Term	30
Final Quiz	30
Project	30
Class Participation	10
Total	100

Group Project

Students shall form into groups of five to work on a group project. The project shall involve valuing a listed company using fundamental analysis (covered in lesson 3). It consists of 5 parts. Part 1 values the company using a simple Pro Forma, calibrated to obtain the current market price. Part 2 values the company using the by parts methodology. Part 2a calibrates the model to obtain the current market price, while part 2b implements the group's fundamental analysis conclusions to obtain a target price. The group then presents a buy/sell/hold recommendation. The deadline for parts 1 and 2 is the Friday 12pm noon on the 8th week. Part 3a studies the drivers of the business model and structure the fundamental analysis based on the drivers. Part 3b implements the beliefs of the "MD" to obtain the buy/sell/hold recommendation required by the "MD". Part 4 does sensitivity analysis and simulations by varying the drivers to perform risk analysis on the stock price. Part 5 presents a group feedback on the course. The deadline for parts 3, 4 and 5 is the Friday 12pm noon of the reading week.

Mid-Term Quiz

Date: Lesson 7 (In Class)

The mid-term quiz will be a 2 hour open-book open internet practical test done through LumiNUS. This quiz covers lessons 1 to 6. It will be held during class hours. Students are to make sure that they are available to sit for the mid-term.

Final Quiz

Date: Lesson 13 (In Class)

The final quiz will be a 2 hour open-book open internet practical test done through LumiNUS. This quiz covers lessons 7 to 12. It will be held during class hours. Students are to make sure that they are available to sit for the final quiz.

Other points to note

- Attendance: Since this is a 100% CA course, students must not miss more than 2 classes (not including absence due to medical (accompanied by medical certificates) or compassionate reasons). Violators will be heavily penalized or may even fail the entire module.
- CA Attendance: Students who miss any CA component will receive zero marks for that particular component. Absentees due to medical (accompanied by medical certificates) or compassionate reasons may be given a substitute form of assessment.
- Students are encouraged to always feedback to the instructor comments and suggestions that may help the class to learn better.
- Students are to check the IVLE weekly for announcements.
- Please use the forum in IVLE exclusively for students' discussions
- Please use NUS e-mail for e-mail communications

Academic Honesty & Plagiarism

Academic integrity and honesty is essential for the pursuit and acquisition of knowledge. The University and School expect every student to uphold academic integrity & honesty at all times. Academic dishonesty is any misrepresentation with the intent to deceive, or failure to acknowledge the source, or falsification of information, or inaccuracy of statements, or cheating at examinations/tests, or inappropriate use of resources.

Plagiarism is 'the practice of taking someone else's work or ideas and passing them off as one's own' (The New Oxford Dictionary of English). The University and School will not condone plagiarism. Students should adopt this rule - You have the obligation to make clear to the assessor which is your own work, and which is the work of others. Otherwise, your assessor is entitled to assume that everything being presented for assessment is being presented as entirely your own work. This is a minimum standard. In case of any doubts, you should consult your instructor.

Additional guidance is available at:

http://www.nus.edu.sg/registrar/adminpolicy/acceptance.html#NUSCodeofStudentConduct Online Module on Plagiarism: http://emodule.nus.edu.sg/ac/.

Tentative Lesson Schedule:

Wk	Learning Outcome	Lesson	F2F Activities	Assignment & Assessment	Chapters
	Basic Excel Functions	Excel Functions	●First VBA pgm		VBA notes
	• VBA1	Data Tables	Exchange Rate Table		SB: Ch. 33, 30, 35
1		Some Excel Hints	• Solver		
l		◆VBA: Output to Cells	 Regression 		
		·	Using IF's		
			Using Offset		
	Personal Finance	Basic Time Value Models	VBA: Single For Next Loop		SB: Ch 1, 6, 7
	Corporate Financial Decisions	The Financial Analysis of Leasing	Loan Table		
	• VBA2	The Financial Analysis of Leveraged Leases	Balloon Loans		
		Cash Flow Projection	 Retirement Planning 		
2		VBA: For Next Loop 1	CPF returns		
			 Leasing Decision Model 		
			 Leveraged Leasing Model 		
			HDB Rental Returns		
			 Cash Flow Projection 		
	Stock Valuation	Financial Statement Modeling	 VBA: Double For Next Loop 	Group Project	SB: Ch. 3
	• VBA3	WACC estimation	Circular Reference		
		Stock Valuation	Model: Cash as Plug		
		VBA: For Next Loop 2	 Model: Cash and Debt as Plug 		
			 Model: Constant Debt Ratio 		
3			 Model: Constant Current Ratio 		
3			 Valuing the Stock 		
			 Model: Operating Leverage 		
			 Model: Geographical Breakdown 		
			 Model: Discrete Re-capitalization 		
			 Model: Discrete Fixed Asset 		
			Increment		
	Matrices	Matrices	 VBA: If-the-else: positive and 		SB: Ch. 2, 31, 34,
	Excel Array Functions	Using Array Functions and Formulas	negative beta		8
	Portfolio Models using Solver	Portfolio Models: Introduction	VBA: If-the-else: stock buy-sell		
4	• VBA4	VBA: If Then Else 1	strategy		
			Practice on Matrix Computations		
			Computing portfolio return and		
			variance		
			 Analyze portfolio with SIA and Sheng 		

			Siong • GMVP via Solver	
5	Portfolio Models using Formulas VBA5	 Efficient Portfolios When There Are No Short-Sale Restrictions Alternative Variance-Covariance Matrix Efficient Portfolios without Short Sales VBA: If Then Else 2 	GMVP without Short Sales VBA: If-the-else: income tax Computing GMVP Computing MVP given return Computing Market Portfolio Computing Efficient Frontier via formulas GMVP without Short Sales MVP given return without Short Sales Efficient Frontier without Short Sales Alternative Var-Cov Matrices	SB: Ch. 8, 9, 10
6	Other Portfolio ModelsVBA6	Black Litterman Model VaR VBA: Do While, Do Until Loops	VBA: Some useful Math Functions VBA: Random Walk VBA: Matching stock prices by date Black Litterman Model Black Litterman Model alternative usage VaR for STI	SB: Ch. 12
	Recess Week			
7	Quiz 1	No lesson	Practical Quiz 1 (2 hrs)	SB: Ch. 41
	VBA7 Option pricing Models: Black Scholes	VBA: User-Defined Functions with VBA VBA: Variable Types VBA: Select Case Statement	VBA: Select-Case VBA: Function: Transaction cost VBA: Function: stock price from	SB: Ch. 36, 37, 13, 15
8	Option Pricing Models:	Introduction to Options The Black-Scholes Model VBA: Arrays	Gordon Super Normal Growth Model VBA: Variable Types Implied Volatility Structured Product 1: Principal Protection + Participation in the upside Structured Product 2: the Up-Up and Away product VBA: your first array	SB: Ch. 39. 16, 19

			VBA: Modeling the stock price	
10	Option Pricing Models: Simulation	 Using Monte Carlo Methods For Option Pricing Intro to Monte Carlo Methods Option Pricing Models: Simulation 	 VBA: Valuing the Call and Put Option through simulation VBA: Modelling with sub periods VBA: Valuing the Asian Call Option VBA: Valuing the Barrier Call Options VBA: Valuing the Basket Option 	SB: Ch. 29, 18
11	 Option Pricing Models: Simulation Option Pricing Models: Binomial VBA10 	Binomial Option-Pricing Model VBA: Forms	 VBA: Using Forms Simulating investment returns Binomial Option Pricing: Vanilla Options Binomial Option Pricing: Structured Products Law of Large Numbers 	SB: Ch. 23, 22, 17
12	Bond Modeling	 Duration Immunization Strategies Modeling the Term Structure Calculating Default-Adjusted Expected Bond Returns 	 Pricing a risky bond Modeling the Yield Curve Computing Par Yield Computing Duration Bond Immunization 	SB: Ch. 25-28
13	Quiz 2	No lesson	Practical Quiz 2 (2 hrs)	